Sharp Logarithmic Sobolev Inequalities on Gradient Solitons and Applications

نویسندگان

  • JOSÉ A. CARRILLO
  • LEI NI
چکیده

We show that gradient shrinking, expanding or steady Ricci solitons have potentials leading to suitable reference probability measures on the manifold. For shrinking solitons, as well as expanding soltions with nonnegative Ricci curvature, these reference measures satisfy sharp logarithmic Sobolev inequalities with lower bounds characterized by the geometry of the manifold. The geometric invariant appearing in the sharp lower bound is shown to be nonnegative. We also characterize the expanders when such invariant is zero. In the proof various useful volume growth estimates are also established for gradient shrinking and expanding solitons. In particular, we prove that the asymptotic volume ratio of any gradient shrinking soliton with nonnegative Ricci curvature must be zero.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Logarithmic Sobolev Trace Inequality

A logarithmic Sobolev trace inequality is derived. Bounds on the best constant for this inequality from above and below are investigated using the sharp Sobolev inequality and the sharp logarithmic Sobolev inequality. Logarithmic Sobolev inequalities capture the spirit of classical Sobolev inequalities with the logarithm function replacing powers, and they can be considered as limiting cases of...

متن کامل

Note on Affine Gagliardo-nirenberg Inequalities

This note proves sharp affine Gagliardo-Nirenberg inequalities which are stronger than all known sharp Euclidean Gagliardo-Nirenberg inequalities and imply the affine L−Sobolev inequalities. The logarithmic version of affine L−Sobolev inequalities is verified. Moreover, An alternative proof of the affine Moser-Trudinger and Morrey-Sobolev inequalities is given. The main tools are the equimeasur...

متن کامل

Hardy-sobolev-maz’ya Inequalities for Arbitrary Domains

1.1. Hardy-Sobolev-Maz’ya inequalities. Hardy inequalities and Sobolev inequalities bound the size of a function, measured by a (possibly weighted) L norm, in terms of its smoothness, measured by an integral of its gradient. Maz’ya [22] proved that for functions on the half-space R+ = {x ∈ R : xN > 0}, N ≥ 3, which vanish on the boundary, the sharp version of the Hardy inequality can be combine...

متن کامل

Sharp Interpolation Inequalities on the Sphere: New Methods and Consequences∗

This paper is devoted to various considerations on a family of sharp interpolation inequalities on the sphere, which in dimension greater than 1 interpolate between Poincaré, logarithmic Sobolev and critical Sobolev (Onofri in dimension two) inequalities. The connection between optimal constants and spectral properties of the Laplace-Beltrami operator on the sphere is emphasized. The authors ad...

متن کامل

Log–sobolev Inequalities and Regions with Exterior Exponential Cusps

We begin by studying certain semigroup estimates which are more singular than those implied by a Sobolev embedding theorem but which are equivalent to certain logarithmic Sobolev inequalities. We then give a method for proving that such log–Sobolev inequalities hold for Euclidean regions which satisfy a particular Hardy–type inequality. Our main application is to show that domains which have ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008